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A Look-Ahead Lanczos Algorithm 
for UnsymmetTic Matrices 

By Beresford N. Parlett, Derek R. Taylor and Zhishun A. Liu* 

Abstract. The two-sided Lanczos algorithm sometimes suffers from serious breakdowns. These 
occur when the associated moment matrix does not permit triangular factorization. We 
modify the algorithm slightly so that it corresponds to using a 2 x 2 pivot in triangular 
factorization whenever a 1 x 1 pivot would be dangerous. The likelihood of breakdown is 
greatly reduced. The price paid is that the tridiagonal matrix produced by the algorithm now 
has bumps whenever a 2 x 2 pivot is used. Experiments with several versions of the algorithm 
on a variety of matrices are described, including some large problems arising in the study of 
plasma instability. 

1. The Lanczos Algorithm and Its Breakdown. The most popular way to obtain all 
the eigenvalues of a nonsymmetric n x n matrix B is to use the QR algorithm which 
is readily available in most computing centers. As the order n increases above 100 
the QR algorithm becomes less and less attractive, especially if only a few of the 
eigenvalues are wanted. This is where the Lanczos algorithm comes into the picture. 
It does not alter B at all but constructs a tridiagonal matrix J gradually by adding a 
row and column at each step. After several steps some of the eigenvalues 9, of J will 
be close to some eigenvalues Xk of B and by the n th step, if nothing goes wrong, 

=Xi, i = 1,...,n. This description is correct in the context of exact arithmetic. 
Unfortunately things can go wrong, even in the absence of rounding errors. The 
relations between these troubles and orthogonal polynomials are developed in [2]. 

In order to discuss these troubles we must say more about the algorithm. Let Jk be 
the k x k tridiagonal produced at step k of the algorithm. There are infinitely many 
tridiagonal matrices similar to B and J,n is one of them. Thus for some matrix 
Qn:= (ql,...,qn) we have 

(1) QnlQn =Jn. 

It simplifies the exposition considerably to introduce a redundant symbol and write 

Pn* instead of Q-1. The superscript * indicates conjugate transpose. 
Let Pn= (P1... ,pn) and replace (1) by two separate relations 

(2) Pn*Qn = I1 
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(3) n*Bn= - 

We mention in passing that when B* = B = A, then we can arrange that Pn = Qn. 
The difficulty we are going to describe cannot occur when Pn = Qn. 

By equating elements on each side of BQn = QnJn and Pn*B = JnPn* in the natural 
increasing order, we shall see that B, Pi and q1 essentially determine all the other 
elements of Pn, Qn and J,. On writing 

at1 Y21 
/32 a2 73 

Jn /3 . 

. Yn 

we find 

P*Bql = a1, 

and 
Bql = qlal + q2132, PiB = a1pl + Y2P2I 

Hence q2 and p* are, respectively, multiples of "residual" vectors 

r2:= Bql - qlal, s* pB - aP 

Furthermore, sincep*q2 = 1 by (2), we have 
S* *q28 712='2 s2r2 = Y2p2q2/3 2 : 02. 

If w2 # 0 and /32 is given any nonzero value, then Y2, q2 and p* are all determined 
uniquely. One good choice is /32 = J021. 

The general pattern emerges at the next step, on equating the second columns on 
each side of BQn = QnJJn and Pn*B = JnPn* 

P2*Bq2 = a2, 
Bq2 = q1Y2 + q2a2 + q3/33, p*B = /32P1 + a2P2* + Y3P3. 

At this point we can compute the "residual" vectors 

:Bq2 - qly2 - q2a2, s* := p*B - /32P - a2P2* 

and 

W3 3 5*r3 = Y3/33. 

If 03 # 0 and /33 is given any nonzero value then y3, q3 and p3* are all determined 
uniquely. And so it goes on until some wj vanishes. 

Example 1 (No breakdown). 

B = diag(2,3,4), q* = [1, 1, 1], p* = [1, 2, 1]. 

Step 1: 

w-3, W2= 2 / 
2= 19 Y2 21 

q2* = 2[i1,o,1], P2* = [-1,0, 1]. 

Step 2: 

qa2=3, 3=2 /33-1, Y3-2 
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Step 3: 

(x3= 3, W4 =-O 

3 2 

J3= 1 3 2. 

_0 1 3 

This is the Lanczos algorithm. It must terminate at the nth step with Wn? = 0 but 
it may stop sooner. 

Premature termination at say step j (< n) can occur in two ways: 
(I) either rj 1 = 0 or sJ*+1 = 0* or both, 
(II1) rj + I A ?, sj*+ I =A ?, b ut cx>+ I = ?. 
In the 1950's when the Lanczos algorithm was regarded as a way to compute Jn 

Case I was regarded as a mild nuisance. If rj+l = 0, then any nonzero vector 
orthogonal to P1,... ,PJ can be chosen as qj + . Similarly sj+I = 0 gives ample choice 
for pj + . 

Today, regarding Lanczos as a way to find a few eigenvalues of large B it seems 
better to stop at Case I in the knowledge that every eigenvalue of Jj is an eigenvalue 
of B. If more eigenvalues are wanted then it is best to start the Lanczos algorithm 
afresh with new, carefully chosen starting vectors q1 and pi. 

The real trouble, which cannot occur when B = B* = A, is Case II. Wilkinson 
calls this a serious breakdown. There seems to be no choice but to start again but no 
one has been able to suggest a practical way to choose the new q1 and Pi so as to 
avoid another wasted run of the algorithm. That is why the Lanczos method has not 
been used much when B* 0 B. In this article we propose a modification of the 
algorithm which greatly reduces the occurrence of Case II. The price paid for this 
convenience is that J is not quite tridiagonal. There is a small bump (or bulge) in the 
tridiagonal form to mark each occurrence (or near occurrence) of Case II. 

2. The Two-Sided Gram-Schmidt Process. The serious breakdown described above 
is not limited to the Lanczos algorithm. It can occur in any attempt to use the 
familiar Gram-Schmidt process to produce a biorthogonal (or biorthonormal) pair of 
sequences. Our modification of Lanczos seems more natural in such a context. 

Let F = ( .f . ,f,) and G = (gl,. .., g) be given real nonsingular n x n matrices. 
In other words { fi, ... 9,f } and { gl, ... , gn } are each a basis for the vector space R' 
of column n-vectors. We want to produce a new pair of bases { ql,... , qn } and 

p ... pn ) such that 

P*Qn= Tn = diag(4',. . n) 

and, for each j = 1, ... , n., 

span{ q1, . ,qj1} = span{ fl, . . .,fj } span{ p1,* ,p } = span{ g, ... }g- 

The Gram-Schmidt process dictates that at stepj 
j-1 j-1 

qj = fj - E qj (p P*jq+ ) Pj = gj - E Pi ( qi*gjl/ ) fj = pj*qj - 
i=l i=l 

All goes well until Ay = 0 for somej. This can happen despite the fact that F and G 
are nonsingular. 
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Example 2. 

F= 1 2 1 G= 0 0 1]. 
-1 1 2- 0 1 0 

Step 1: q1 = fi, p1 = g1, 4' = 1. 
Step 2: q12 = [0,1,0],P2* = [-1,0,1], 42 = 0. 

Our remedy for the case fj = 0 is quite natural. If pj # 0 then recompute qj using 
f1j+I in place of fj. If this fails too, then try fj+2, and so on. If F is nonsingular, there 
must be some i > 0 such that f+ i will yield a nonzero value for Pj. 

Here is a formai proof of the last remarks. Let qj(k) denote the vector obtained by 
using fk instead of fj, i.e., 

j-1 

q(k) =fk- 
Z 

qi(p fkl/i) 
i=l 

LEMMA. If PJ # 0 and pj*qk) O 0 fork =j, j + 1,.. ,n, then F is singular. 

Proof. By construction pj*qi = 0 for i < j. 
Hencepj I span(fi . . . - l) 
Thus 0-= p*qj(k) =p fk-0, for all k >j. 
Thus p1 1 span(f1... . 
Thus pF = O and F is singular. E 

Now consider again the use of f1+ I instead of fj. If the modification succeeds the 
first time then only one property of Gram-Schmidt has been sacrificed, namely 

span(qj,.. ,qj) # span(fi, .fj)- 

Moreover, if no further breakdown occurs then 

span( ql, . ..., qi ) = span( fi, ..ti ) for i > j. 

In many applications this price is well worth paying. Before describing our remedy 
we must relate Gram-Schmidt to Lanczos. 

The Lanczos algorithm can be regarded as the two-sided Gram-Schmidt process 
applied to the columns of the special matrices 

pi*B 

K=Kn [ql Bql B2ql ...,Bn lq1] and k* =Kn*= pg2 . 

p*B n-1 

We will not establish this result but content ourselves with stating the key observa- 
tion, namely 

span(ql, q2,- . ,qj, Bqj) = span(ql, .. , q1, BJq1). 

The K matrices are called Krylov matrices and the pleasant fact is that most of the 
work required for general Gram-Schmidt disappears in this case because 

pi*Bqj= 0 fori <j-1. 
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Thus, the general formula 

f1+ lqj+ 1 = B'ql - S qj(p;"B'q1l/+p) 
i=l1 

collapses to the famous three-term recurrence 
+ lq+ 1 qj = Bq1 - q1 o-q- ly 

3. Triangular Factorization of Moment Matrices. Consider again the matrices K 
and K* defined in the previous section. Note that the (i, j) element of K*K is 

(pl*B -)(Bi 'qj), so 

K*K= M= M(p1,q1); wheremi+,j+1 =pl*B 'ql. 

In order to use this observation we need some basic facts about the Lanczos 
algorithm (see [3], [5] or [12]). If it does not break down it produces matrices P and Q 
such that 

qj+l = Xj(B)ql/(Hf31), Pj+l = Xj(B*)Pl/( L Yi), 

where 

Xj+1(t) = (t - aj)Xj(t)- Xj_j(t), 

and Xj is the characteristic polynomial of the tridiagonal matrix Jj. In other words, 
for each j, qj is a linear combination of the first j columns of K while pj is the same 
linear combination of the columns of K, up to scaling. This can be expressed 
compactly in matrix notation as 

(4) Q = KL-*IH-1, P = KL-*fi-1. 

Here 
H = diag(l, 2,f,2fB3,...), [ = diag(l, 22,y 2Y3,***), 

and L is the unit lower triangular matrix such that L-*:= (L-1)* has the coeffi- 
cients of Xj above the diagonal in thejth column. 

Using (4) we can rewrite I = P*Q as 

I = P*Q = (fI-lL-lk*)(KL-*H-l), 

i.e., 

(5) M= L= L*, 

where 
Q = fIlI = diag(i, cW2, Wo2o3,.. I * ,2 .. * n ) 

This result is not new (see Householder [3]) but it is worth emphasizing that the 
product (02 ... Wi is the ith pivot used in performing Gaussian elimination on the 
moment matrix M associated with B, q1 and Pi1 

When B # B* the moment matrix M need not be positive definite and so 
triangular factorization need not be stable, even when M is nonsingular. Even when 
B* = B = A it is the condition q1 = Pi which forces M to be positive definite. 

The best known remedy when jjLIj >> jIMIj is to use some form of row or column 
interchange whenever an oi is too small. The standard "partial pivoting" strategy is 
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not available because a whole column of M is not available in the middle of the 
Lanczos process. An alternative remedy is to enlarge the notion of a "pivot" to 
include 2 x 2, or even larger submatrices. This idea is discussed in Parlett and 
Bunch, 1971, [8]. It is the basis of our method. Whenever a 2 x 2 pivot is used the 
tridiagonal J bulges outwards temporarily. 

In the context of the Lanczos process, our remedy for a tiny co requires us to 
compute qj+1 at the same time as qj, and pj?+ at the same time as pj. The formulas 
for these "Lanczos" vectors are somewhat different from the standard ones. We call 
our modification the "look-ahead Lanczos algorithm" because it computes at the 
current step some quantities which are not usually needed until the next step in the 
standard Lanczos process. However, no matrix-vector products Bq or p*B are ever 
wasted. 

4. The Next Pivot. The decomposition M = L2L* is never found explicitly. In 
order to make use of the idea of using a 2 x 2 pivot it is necessary to determine the 
top left 2 x 2 submatrix of what would be the reduced matrix in the triangular 
factorization of M. These three numbers can be determined from the information 
available in the Lanczos process. 

After i - 1 steps of the standard algorithm we have 

r,:= Bqi-l- qi-li-l- qi-2Yi-I = X-1(B)q1/(32 ... * i-1) 

-1 :LB-IPli - Ii-1P*-2 = P*Xi-1(B)/(y2 Y11)' 

Instead of normalizing ri and s* to get qi and pi we can look ahead not to the next 
Lanczos vectors qi+ 1, pi*I but to any vectors ri +, s * I such that 

the plane (ri, ri + 1) = the plane ( qi, qi+ 1?), 

the plane (s * 1) = the plane ( p*,p *1). 

The simplest choice for ri+ and si+1 is 
:= Bri - qi-li, S* := s*B - - 

The coefficient wi ensures that r1+j is orthogonal to all the known p's, namely 
Pi' . . .,pi- 1, and also that si+ 1 is orthogonal to ql,. . ., qi 1. 

Note that if we choose as qi any vector in the plane (ri, rilA) other than a multiple 
of ri then qi will be of the form 

qi = 4i(B)q1/(32 *ll 13) 
with 4 a monic polynomial of degree i instead of the usual Xi-, of degree i - 1. 
Moreover, it will be possible to choose qi +? to be of the same form, using a different 
4 but of the same degree i. This is a mild generalization of the basic Lanczos 
algorithm. The degrees of the new Lanczos polynomials are still nondecreasing but 
they do not always go up by one at each step. Before making a choice for qi, qi +, pi, 
p? +1 we compute 

Ilrill, Ilsill, and cosz(ri, si) = wi/llrill * j Ijs~I. 
Also, 

Wi+1 = 5*+lri+ 1 i = S**ri+1 = S1*+ ri 

I|ri+r?I, iis?*III, cosz(ri+?, Si+?) = Iwi+Il/IIri+II1 * IIS*? 
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Our choice of qi, etc., must be based on the matrix 

I _i Si+l 

It turns out that the top left 2 x 2 submatrix of the reduced matrix that occurs in 
the associated triangular factorization of M is (W2 ... wi1I)Wi. The reduced matrix 
is defined in [7, p. 198]. 

If both wi = 0 and Wi is singular then more drastic measures are needed to salvage 
the algorithm. We will pursue this case in Section 7. When wi = 0 then the standard 
Lanczos algorithm breaks down. Yet, if Wi is invertible, it is easy to choose suitable 
q 's and p's so that the algorithm can proceed. 

The equations above can be condensed into block form. 

(ri, ri+,) = B(qi-., ri) -(qi-l, ri)[a&1 [] - qi-2[Yi-1,0O, 

(S, Si+)* = (Pi- ,si)*B - [a i (pi-,,)* - i] P*-2' 

Wi = (Si, si+l)*(ri, ri+l) [' X1] 

Various factorizations of Wi yield various selections for new q's and p's. These are 
discussed below. We write Xt for wi+ 1 and 0 for Oi. Let us drop the subscript i and 
write 

S*R = W= VU. 
Rewrite the above equation as 

I = V-S*RU-1 = (SV-*)*(RU-1) 

and recall that P*Q = I. We thus have 

P = SV-*, Q =RU-1. 

1. LUfactorization 

V 
[8,@ 4] U 4o -o2/@]. 

2. UL factorization 

V= [@ O 

0 

] U [8@ 

3. QR factorization 

V=[~ HA]T TU=[I (2) T ' 2= (02+ . 

4. LU with interchange 

[w1 O ] U [ - co,/0] 

5. The smallest angle. In order to determine the smallest angle between the planes 
(ri, ri, l) and (si, si,+) it is best to orthonormalize the bases. Let the result be 
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when the Gram-Schmidt process is used. The (matrix) angle between the two planes, 
call it 4X, is defined, see [1], by 

cos D = (Si, gi+ ) * ( fi+ ) 

Let the Singular Value Decomposition of cos 4D be 

cos 4 = U V* 

where L: = diag(ol, 02) and a, > a2. The appropriate definition of new Lanczos 
vectors to ensure the smallest Z(qi, pi) is 

(qi, qi+1) = (iV, f)vE-172, (Pi, pi+ = (?i, gi+1 )UE-1/2. 

Comments on the Factorizations. No. 1 corresponds to the standard Lanczos 
algorithm. No. 2 corresponds to simply swapping s* with s*B and ri with Bri in the 
Lanczos algorithm. One consequence is that the J matrix will bulge out of tridiago- 
nal form on both sides of the diagonal. No. 3 is always stable and keeps the bulge on 
one side. The same advantage accrues from No. 4 and, as might be expected, is 
somewhat simpler than No. 3. 

We want to use No. 1 whenever this is a reasonable strategy but when co is zero or 
very small it is vital to choose one of the other procedures. We have tentatively 
chosen No. 4 on the grounds of simplicity. The interesting question which we now 
address is when to use No. 4. 

Initial success with No. 4 did not encourage us to implement No. 5. Then, in his 
thesis [11], D. R. Taylor struck a fatal blow at the claims of No. 5. We summarize 
the results in Section 3.5 here. 

If pi and qi are chosen to minimize Z(pi, qi) then biorthonormality fixes pi+I and 

qi+l and 

cos z( Pi, qi) = a= largest singular value of cos 4), 

Cos z(pi+,, qi + = 'g2 = smallest singular value of cos 4). 

Now the best practical measure of the linear independence of the bases { Pil... ,pj } 
and {ql,...,qj}is 

max Z(pi, qi) 

or, more practically, 

min cosz(pi, qi). 

From this point of view the best choice at a double step is to maximize 

min{cosz(pi, qi), cosZ(pi+1, qi+ )} 

Clearly, No. 5 is a poor choice. Taylor proves (Theorem 3.1) that this maximum is 

2a1a2/(l1l + 02), the harmonic mean of a, and a2. 
These results make precise the following intuitive picture. If Z(ri, si) is large but 

the planes spanned by (ri, ri+?), (si, si+?) are quite close to each other then our 
modifications to Lanczos will pay off handsomely. If, however, one of the angles 
between the planes is nearly a right angle then our device will not help. 

Criterion for Choosing a 2 x 2 Pivot. When Factorization No. 4 is chosen then 

(qi, qi+1) = (ri, ri+?) [ oi?+ l/ijl (Pi, Pi'+ ) = (Si+ , Si) 
I 
n "''j' 
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to within scalar multiples. Please note the interchange. Hence 

Cos z(qi, pi) = cosZ(ri, si,?) = =:CX 

cosz(qi+1, pi+,) =-w1wi+1/61) =C (i+ t i SSi + S/ai 

11 ( i ) 1 1 i ) 1 

Both these numbers are readily computable, without forming the new vectors, 
provided that rt*+Iri and s* Isi are known. The choice between No. 1 and No. 4 
reduces to a comparison of 

il =Icosz(ri,si)I and 02= min{I4'l, I'iI}i 

If 01 < 100e and 02 < 100e then our algorithm stops and reports failure. Otherwise, 
for a given bias factor we proceed as follows: if 4l > (bias factor)42 then use 
standard Lanczos else use Factorization No. 4. When bias = 0 we recover the 
standard algorithm. Currently bias = 2. 

Sometimes the test declares that a standard Lanczos step is safe. In such cases, 4l 
and 4'2 are not used and their computation may be regarded as an overhead of four 
inner products. Fortunately no matrix-vector products are "wasted". The four inner 
products arise as follows. We need 

i ll I* ( si )S*ASi lsill- 2( i )s*si? +( iISi+lII) 

22 

ri+l( ,, 
i 
lri+112 - 2( )ri*ri+ ( Irill,. 

We may regard the second and third terms on the right-hand sides as the price to be 
paid for knowing that a standard Lanczos step is safe. Observe that Pi+, and s are 
not computed. 

To summarize, let us write Ri = (ri, ri+,), Si = (Si, Si+l) 
The look-ahead part of the algorithm comprises the computation of ri+', Si+l and 
the unknown elements of S*Ri, R*Ri and S1*Si. Before specifying the algorithm we 
describe the bumpy tridiagonal matrix J. 

5. J, The Projection of B. The standard (biorthogonal) Lanczos algorithm pro- 
duces a tridiagonal matrix Jj by the end of stepj. The look-ahead algorithm produces 
a block tridiagonal matrix, also called Jj, and written as 

A1 P2 

B2 A2 T3 

J= B3 A3 

Bj Aj 

The diagonal blocks are capital a's and the subdiagonal blocks are capital ,B's. The 
Ai are either 1 x 1 or 2 x 2 and the Bi and 1i are shaped conformably. For 
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convenience in finding eigenvalues of J we have forced each B, to have one of the 
following four forms 

[+S [? +]S [ O 0'[ O] 

where + stands for a positive quantity. It turns out that each Pi also has rank one. 
The left and right Lanczos vectors will be grouped by step and written as 

P1*, 2* ,P** and Q1, . . , QJ, where sometimes Q, is n x l and sometimes n X 2. 
We collect the vectors together in QJ = (Q1,...,Qj) and PJ = (P1,...,Pj). The 
matrix Q PJ* is the projector matrix onto the left and right Krylov subspaces and 
B 's (oblique) projection into them is defined by 

j ̂yy ) B( Qy j * ) = QJ Jj p 

Thus Jj is the representation of this projection with respect to the bases given by the 
rows of Pi and the columns of Qj. 

Please note that j is not the order of JJ 

6. The Look-Ahead Lanczos Algorithm (called LAL hereafter). We have chosen our 
notation to camouflage the complications caused by the fact that each step may be 
either a single one or a double one. It turns out that quantities are computed in a 
somewhat different order and way from the standard two-sided Lanczos algorithm 
(called LAN) and the reader may find the differences loom larger than the 
similarities. We have found it helpful to think that step i takes certain residual 
matrices Ri and Si, decides how to modify them, then turns them into the new Q 
and P,*, and finally computes part of the next set of residual matrices. 

It is convenient to define the index / by 

/ = 1 + order(Q,1) 

Thus by the end of step i we shall have 

(ql, if step i is single, 

(ql ql+,1) if step i is double. 

Similarly for P,*. However, in all cases, R1 = (r,, rI+A) and Si = (s,, s,+1). 
In describing LAL we call any computation involving n scalar multiplications or 

divisions a vector operation and abbreviate it as 1 v.op. The algorithm requires that 
the user supply a subroutine (or subroutines) for computing Bx and y*B from x and 
y*. The cost of these operations will be problem dependent. We stress that this is the 
only way in which B enters the process. 

Step i of LAL. On hand are P,* 1, Qi- 1 (both are null when i = 1), and zi which is 
a multiple of column 1 of r, (z1 = 1), together with nonnull residual vectors r,, s* 
and scalars X = ,= s*r1, IIrI, 11s711 

1. Look-ahead: 

(a) Compute R, = (r,, rL+F) and Si* = (s1, s+?1)*. 

rL+1 = Br -Qi- 
S*= s*B- * 

(2+ mIxvc product- 1 3 

(2 matrix-vector products + 2 or 3 vector ops.) 
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(b) Compute needed inner products. 

9 S (AI =s 8 lr,+ I = s,*+ ir,, @'=sl rl+ 1' 

r* rl+ I, s, sl+ 1, + 1 ll r I 1- 

(6 v.ops.) 

(c) Compute cosines of important angles. 

ol = cosz(rl, s1) = c/1ll1r111 *IIsll, 02 = 0; 

if 9 = 0 then go to step 2, otherwise 

= o/98 T2 =V 

PI+ ill = IIIr,+112 -2T2(r1*r1+ 1) + T221IrII2 

11II = |IISjI1 - 2T,(s*Sl+?) + T21II 1112 

cs1 = CoSz(rr, s? 1) = 0/lirill Is* ?I11, 

42 = COSZ(rl+1, ?1) = - 9T2 )/II?+ 1 IIs 111 

k2 = mint14'1, 1421}- 

(O V.ops.) 

2. Test for failure: if loll < tol and 42 < tol then exit with error message. 
3. Select: if loll > (bias factor) 02 then take a single step, otherwise take a double 

step. 
4. Side-by-side details of a single/double step. 

Single Double 

(a) factorW= = VU. 

/3, = 11 r, | 1 y/W W\A = diag(13, I13,3+,1) 

= co/13, = diag( IIr,iI ll4 r i ,+ 1l11 4) 

(O v.ops.) (O v.ops.) 

V = [, 
I 
o[0 -^0- 

I 0[Ti 
i][ 

( 
9 > 

0 1 
(b) form Q, and P,* 

q, -erllB,, Q, RI u-, 

P* = s /* V- 1S* 

(2 v.ops.) (6 v.ops.) 

(c) complete F,, B, 

,= Y,IF, =z[ W,,4i2]A1 

B,1=,lor[O P,I] B, = pi or [ PI 

(O v.ops.) (Ov.ops.) 



116 BERESFORD N. PARLETT, DEREK R. TAYLOR AND ZHISHUN A. LIU 

Single Double 

(d) form new residuals 

r +1 = r + 1fl,' r +2 = (BQ, -Q,- r,) 

51+1 = s7+1/71 1+2 = B -1 
= [0 1](P,*B - B,P,*1) 

(2 v.ops.) (2 matrix-vector products + 2 or 3 v.ops.) 

(e) form A, 

T2 pi*Bql+1 

a/l = l/rl Al:/+ - Tfl tp*Bq,+l 

(O v.ops.) (1 v.ops.) 

(f) biorthogonalize 

rl+l rl+l-qlul r,+2 r,+2-QiA [?]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r12 r+2-QA 

51+1 517+1 -ap7 5 1 + 2451*+ 2-[1 0] A, P,* 
(2 v.ops.) (4 v.ops.) 

(g) inner products for next step 

IIr+iII - IIjr,+1112 - 2a,r,*r,+1 
+ 

alII,rII27 /,I, compute IIr,+211, 

11S,+1i 
1- Is,+ 112 - 2a,s7s5+1 + c4iIs 112/ 11s,+211, 

_ ~~ ~~~~ I 

/72 1S*21 

,I+ I 0/w- 21+2 
= 

S1*+2rl+2 

(O v.ops.) (3 v.ops.) 

(h) reset z 

Zi+= [1] Z,+1= - *"m+1I 

end of step i of LAL. 

Total cost of step i: 
Look-ahead: 2 matrix-vector prods + 9 v.ops. 
Single step: 6 v.ops. 
Double step: 2 matrix-vector prods + 16 v.ops. 

For comparison we note that the standard two-sided Lanczos algorithm which keeps 
II p*11 = l1q,11 requires 2 matrix-vector prods + 10 v.ops. 

There are 3 different ways of advancing two steps 
LAN: 4 matrix-vector prods + 20 v.ops., 
LAL, 1 double step: 4 matrix-vector prods + 25 v.ops., 
LAL, 2 single steps: 4 matrix-vector prods + 30 v.ops. 
The bias factor in Step 3 is a programming device which permits LAL to 

implement standard Lanczos (bias = 0) or a sequence of double steps (bias = so). 
We do not claim that our setting (bias = 2) is optimal, but we doubt that it is far off. 

7. Incurable Breakdown and the Mismatch Theorem. In Section 4 we mentioned 
that it is possible for both the 1 x 1 pivot wj and the 2 x 2 pivot Wj to be singular. 
In principle we could then consider the leading 3 x 3 submatrix of the reduced 
moment matrix as a pivot. If it too were singular we could consider the 4 x 4 
candidate and so on. If all such principal submatrices are singular then we say that 
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the breakdown at step j is incurable. In his thesis [11] Taylor proves the following 
surprising consequence (Theorem 4.2) of this ultimate disaster. 

MISMATCH THEOREM (TAYLOR). Let B have distinct eigenvalues and let J. be the 
block tridiagonal matrix produced by the Look-ahead Lanezos algorithm at step j. If 
incurable breakdown occurs at step j + 1 then each eigenvalue of Jj is an eigenvalue of 
B. 

We add that neither span(Pj) nor span(Qj) is invariant under B. The reason for 
the name of the theorem becomes clear in the proof. Each starting vector must 
contain components of eigenvectors that are not matched in the other starting 
vector. 

8. How to Monitor the Linear Independence of the Lanczos Vectors. In practice we 
have found it convenient to normalize each Lanczos vector to have unit length, 

II Pill = llqill = 1. Consequently, 

Pj*Qj =: 41j = diag( 4i,.. j) , Ai > ?, 

instead of the identity matrix. The formulas in both LAL and LAN must be changed 
accordingly. Moreover, the "Ritz" values 0 at step j come from the generalized 
eigenvalue problem 

det(J - 0J') = 0. 

One incentive for making this change is that our technique for updating "Ritz" 
values at each step (using the Hyman-Laguerre method [6]) extends without change 
to the generalized eigenproblem. 

Another advantage is that the elements of 'I indicate the quality of the Lanczos 
bases { P 1,. *p1 }, , *.. . , qj }. The standard measure of the linear independence of 
the columns of a matrix is its condition number for inversion. Recall that 

Pi:= (p1,...,pj) and 

cond( P):= (IIP*PIil (p*pi) 1)/2 = IIP 11IIP + 11 
where P+ is the pseudo inverse of Pj. The normalization IIpill = 1, i = 1,...,], 
ensures that 

Ijll2 := |IPj*P;II < |Imatrix of 1'sll = j. 

Similarly 11Q1112 j. In exact arithmetic Pj*Qj = Q*Pj = tj = symmetric, and tj is 
invertible. By checking the four Moore-Penrose conditions it can be verified that 

( p*)?+= Q.I Q+ = -lp* 

So 

lPj+ = l(Pi*) 
+ < IIQ 111 Jj- 1JJ. 

For the regular Lanczos algorithm l[Tj-1II = 1/minj 1j1j4vi, and, in this case, 

cond(Pj) < Jlji'll 11 Qill/ min ii < jl/ nmin 4j 
1 < i <j 1 <i%?<j 
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In practice, both 11P.11 and IlQjlQ grow much more slowly than does vF7. Even]jl4 is an 
overestimate in the cases we have tried. However, for Lanczos runs limited to 200 
steps the factor j is not serious. With biorthogonalization maintained 1/minl1 1j i 
is a very good-and cheap-measure of the quality of the Lanczos bases. 

However, without explicit biorthogonalization of the pi and qk the relation 
Pj*Qj = tj fails completely as soon as an eigenvalue of the pair (Jj, 'j) stabilizes 
and after that point linear independence is lost for all practical purposes. There is no 
point in monitoring the {i after this point. 

9. Numerical Examples. We give a few examples which contrast the performance 
of the standard two-sided Lanczos algorithm and our Look-ahead variant. They 
illustrate the stabilizing effect of the new variant. 

All our computations were done on one of the VAX 11/780's of the Computer 
Systems Research Group at the University of California, Berkeley. 

The Look-ahead algorithm reduces to the regular algorithm when the bias 
factor = 0. We kept the bias = 2 for all our examples. 

Example I: 

0 00 0 0 1 1 
1 0 0 0 0 0 2 

K 1 00 0013 B = 0 01 0 0 0 ri = SI 4 
numberof steps = 6 

0 0 0 1 0 0 5 
0 0 0 0 1 0 -6 

The eigenvalues of B are the sixth roots of unity. The size of the matrix allows for 
the complete history. 

The following table gives snapshots of a Lanczos run, exhibiting what we feel is 
the essential information. 

I the order of the J-matrix. 

(1A 2- cosines of angles between various candidates for p and q1. See Section 4 
for precise definition. 

p( J )-the spectral radius of J. 
The goal of our algorithm is to keep 4l from sudden plunges towards 0. We could 
have used II JII instead of p (J), as indication of "instability". We fear the appearance 
of arbitrarily large "spurious" eigenvalues in J. We expect some of J 's eigenvalues 
to stabilize, as / increases, at certain points in the complex plane. These points 
should be part of B's spectrum. 

If a double step occurs in the Look-ahead algorithm for a particular value of / 
then 4p and 42 are not defined at / + 1 and such places are indicated by dashes. 

Regular Lanczos Look-ahead Lanczos 

/l Oi 02 p(J) p( J2 p(J) 

1 lOOOe + 0 1.277e - 1 8.351e - 1 lOOOe + 0 1.277e - 1 8.351e - 1 
2 1.281e - 1 7.661e - 3 1.503e + 0 1.281e - 1 7.661e - 3 1.503e + 0 
3 7.204e - 3 3.177e - 8 1.004e + 0 7.204e - 3 3.177e - 8 1.004e + 0 
4 3.025e - 8 4.880e - 2 5.509e + 6 3.025e - 8 4.880e - 2 
5 3.025e - 8 O.OOOe+O - _ - 4.781e + O 
6 _ _ _ 6.757e - 3 O.OOOe +O 1.OOOe + O 
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Comment: Step 1-3 of both Regular and Look-ahead Lanczos are identical. At 
step 4, Regular Lanczos normalizes s4 and r4 by factors of 10-3, producing elements 
in J of size 106. Step 5 Regular Lanczos is then aborted because the vectors are now 
orthogonal to working precision. 

The Look-ahead algorithm avoids the large element growth in J, by doing a 
double step. The resulting J-matrix had eigenvalues identical to B to working 
accuracy. 

Example LI: B is 12 x 12 block upper triangular with diagonal blocks shown 
below. The other upper triangular elements bij were randomly distributed in [-5, 5]. 

B1 =[_ 9] B2[= p2 B3 = [99], B4= B5 = [98], 
r 2 -5s95 

B6= 25 -25 ] B7= [10-2], B8- 50 -50] L50 25 L50 50 
rl = S1 = [1, ... j1*. 

Number of steps taken = 24. 

Attributes. B is 12 x 12 and fairly far from normal. In particular, the five 
eigenvalues near 97 form an ill-defined cluster because the off-diagonal elements in 
the Schur form are all approximately the same magnitude as the separation between 

Behavior of "Ritz" values approaching well separated eigenvalues 

1 o 0 . o 

90.0 4 

.3 
80.0 

7 0 . 0 _ 

60 . 0 

50.0 8 8 

40.0 6' 

30.0 

20.0 

10. 0 

0 .0 i6 ---- - -X 4 1----- - --- 3 F6 4 

-10.0 I I I I 

-30.0 0.0 30.0 60.0 90.0 120.0 

FIGURE 1 

LAL with/without full rebiorthogonalization 
A& 7 well-isolated eigenvalues of B 
5 cluster of the remaining 5 
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these five eigenvalues. Only half the figures in the double eigenvalue 98 will be 
significant and the other three eigenvalues are just a little better defined. 

Results. 1. When full biorthogonalization was forced, the results from LAN and 
LAL were essentially the same. The process halted at step 12 with the isolated 
eigenvalues correct to at least 6 of the 7 decimals carried. The cluster was given as 

95.001 + 1.9992i, 97.960 and 98.046, 98.991. 
Most of the 4/ (= p7q,) exceeded 0.1 (whereas 4/ = 1 for symmetric matrices) but at 
steps 9 and 10, 4q = 0.014 (for LAL), 4iq = 0.007 (for LAN). 

2. When LAN and LAL were run with no biorthogonalization, they each lost 
biorthogonality by step 10 but neither algorithm came close to breakdown. The 
eigenvalue approximations were indistinguishable. By step 10 the 7 isolated eigenval- 
ues were good to 6 decimals, in the neighborhood of the cluster of 5 each algorithm 
produced 99.11 + 3.26i and 96.72. At step 12 the cluster of 5 is 

95.14 + 2.292i, 98.85 + 0.604i, 91.75 according to LAL 

but 
94.96 + 2.325i, 98.87 + 0.577i, 45.6!! according to LAN. 

However the residual error bounds do show that 45.6 is indeed spurious. 
Neither algorithm halts at step 12, but step 24 exhibits a peculiar feature that we 

cannot explain. Each algorithm has 12 Ritz values which are satisfactory approxima- 
tions to the eigenvalues of B. Whereas the 12 extra Ritz values in LAN are very close 

Behavior of "Ritz" values in the neighborhood of an ill defined cluster 

4 . 0 

1 0 

3.0 

2.0 12A 

1 .0 

0 .0 -1d- - - --8 1 2CO12 12 A 

-1.0 . . . . I I I II 

94.0 95.0 96.0 97.0 98.0 99.0 100.0 

FIGURE 2 

LAL with full rebiorthogonalization 
A the 3 simple eigenvalues of B in the cluster 
< the double eigenvalue 98.0 
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copies of the true eigenvalues, some extra Ritz values in LAL appear to be almost 
random. 

Figures 1 through 3 give some indication on how our LAL performs with or 
without full rebiorthogonalization. The numerals show the first step at which the 
Ritz value arrived at the indicated position. The dotted lines are an aid to 
imagination but have no claim to be trajectories. An isolated , shows that the Ritz 
value never wandered far from its first appearance. For well-isolated eigenvalues, 
there was no essential difference with or without explicit rebiorthogonalization as 
depicted in Figure 1. 

Example III: Attributes. B is 15 x 15 upper triangular matrix with evenly-spaced 
real eigenvalues (-65, - 55,..., -5,0,5,...,65). The superdiagonal elements were 
randomly chosen numbers in the range (- 10,10). The diagonal elements were 

10]j- 75, j= 1,...,7, 
bl' = j 8, 

10]j- 85, j= 9,...,15. 

r=s = [1, 1,...,11*. 

So this is an easy case from the point of view of the spectrum but it is, at the same 
time, far from normal. The Lanczos vectors pi and qi are not close at all. 

Behavior of "Ritz" values in the neighborhood of an ill defined cluster 

4 . O 

4.0 :S 
1 0 

3 . 0 

1 2 % 
2 .0 2 4 

1.0 

%%% \8 12, 
t 2 24 l 8 I 

Q.Q . LB - - - - c0 2O L 4-1 

-1.0 I I, I I I 

94.0 95.0 96.0 97.0 98.0 99.0 1 00.0 

FIGURE 3 
LAL without full rebiorthogonalization 
A the 3 simple eigenvalues of B in the cluster 
<) the double eigenvalue 98.0 
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Results. Excellent. No instability in LAN and consequently LAL used single steps 
throughout and produced the same results. After 15 steps all eigenvalues were good 
to 6 decimals (out of 7 carried) except for 0 which was represented by 3.4 x 10-5. 
However, our stopping criterion was too strict to cause the algorithm to stop (the 
off-diagonal elements only dropped by a factor of 1000). After step 15, the two 
algorithms began to differ but by step 30 both had essentially obtained duplicates of 
the 15 eigenvalues. 

With any form of biorthogonalization both algorithms terminated at step 15 with 
eigenvalues correct to at least 6 figures. The zero eigenvalue was given as 6 x 10-8 

+ 1.1 x 10-10i. 

Example IV: Attributes. B is 100 x 100, diagonal, with distinct eigenvalues. 

B = diag(1,2,.. .,20,41,62,. . .,440,481,522,.. .,1260,1331,1382,..., 

2480,2561,2642, ... ,4019,4100). 

The interest here was to start with Pi and q1 different and random. In fact 

1j= p*ql = 0.06. 

17= ? 1--10-3 

(22) Steps for 

[10-3i] convergence 

30- 

(20) 

(17) 
20 - 

(13) 

10~~~~~~~~~~~~ 
10 - 

(9) 

1- 

0 0 0 

FIGURE 4 

Spectrum of (F, M), n = 94 



A LANCZOS ALGORITHM FOR UNSYMMETRIC MATRICES 123 

Results. Disappointing at first. After 19 steps the largest eigenvalue was good to 4 
figures (4099.8) but no others had converged recognizably. However, the gap ratio 
(X10 - 99)/(X100 - X), which governs the convergence rate, is only 0.02 and 
consequently even with Pi = q1 convergence will not be much faster. See [12, 
Chapter 12] for a fuller explanation. One interesting feature, not yet explained, is an 
unbalanced loss of biorthogonality. For example, p*ql3 1 pl3q3 iO5. At step 13 
413 dropped to 5 x 10-4 and most 4j were less than 10-2. 

We conclude that it is a mistake to begin with nearly orthogonal pi and q1 unless 
they are known to be approximate eigenvectors of the same eigenvalue. 

Example V: Attributes. The Max Planck Institute in Munich has supplied us with 
programs to generate matrices of the form B = F- 1M arising in the study of plasma 
instability; of course, F is not inverted explicitly. There is a parameter 'q (resistivity) 
which can be varied. When q = 0 all the eigenvalues are pure imaginary. Only the 
largest few eigenvalues are of interest. 

We have tried our codes on matrices of order n = 34, 94 and 598. 
Results. Excellent. With a random starting vector (Pi = q1) the largest 8 eigenval- 

ues converged to working accuracy in fewer than 30 steps. This phenomenon is 
independent of n, the size of the matrix. The dominant eigenvalue usually converged 
after 10 steps. 

Figure 4 shows how the (reciprocals of) the eigenvalues leave the imaginary axis as 
1 increases from 0. 

10. Conclusion. The Look-ahead algorithm (LAL) is more complicated than the 
standard two-sided Lanczos process (LAN). We have so far found only one case 
(Example I) in which LAN fails while LAL succeeds. Often they both perform very 
satisfactorily. Each can be used with rebiorthogonalization of the left and right 
Lanczos vectors against each other. This safeguard increases the cost but makes the 
results very close to those produced by exact arithmetic. For short runs (j < 30) on 
vector computers this extra cost of explicitly forcing the Lanczos vectors to be 
biorthogonal may be a small fraction of the cost of the other parts of the algorithm. 

The principal reason for consenting to use two sequences of vectors (Pj and Qj) 
instead of one (as in Amoldi's method, see [9]) is the expectation of convergence of 
the dominant eigenvalues after a small number of steps. When both the column and 
row subspaces contain, respectively, V,i approximations to the eigenvectors of X then 
one of the Ritz values will be an --approximation to X. This cannot happen with 
one-sided approximations unless the matrix is normal. 

LAL is an effective tool for extracting a few eigenvalues of large nonnormal 
matrices. Whether it is better than its rivals remains to be seen. At such a time it will 
be appropriate to discuss computable error estimates, efficient ways to monitor 
convergence of the eigenvalues of J1, and other practical details. 
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